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The effects of pressure gradients on turbulent flow 
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(Received 29 June 1964 and in revised form 31 March 1965) 

A dimensional argument is presented leading to a functional form for the 
effective viscosity which embraces the hypothesis of a previous paper (Mellor & 
Gibson 1966; hereafter referred to as paper A) in the defect portion of a turbulent 
boundary layer. The new argument also suggests a way of determining the 
effective viscosity in the viscous sublayer when the flow is subjected to main- 
stream pressure gradients. 

It will be shown that the large wall-velocity profiles and the defect-velocity 
profiles automatically overlap, even in the absence of a logarithmic portion. It 
will be shown further that equilibrium flows are uniquely determined by p and R. 

1. Introduction 

of the Boussinesq definition of an effective viscosity, ve, whereby 
In  the preceding paper (Mellor & Gibson 1966) it was shown that the adoption 

T/P  = ve(au/%), (1) 

together with some assumptions concerning ve, led to a rather complete store of 
information concerning equilibrium turbulent boundary layers which is in good 
agreement with experiment. 

Paper A was largely concerned with the defect portion of equilibrium 
boundary layers. As long as the parameter /3 = (&* dp/dx)/~~ is small, the defect 
profiles are logarithmic for small enough y and may be matched with the log- 
arithmic portion of the law of wall. In  this way, the defect profile may be related 
to the true wall condition ufy = 0) = 0, and, at the same time, the skin-friction 
coefficient may be determined. However, when /3 is large, one finds that (for 
some Reynolds number) there is no portion of the defect profile which overlaps 
the logarithmic portion of the law of the wall. Conversely, under the same condi- 
tions, it  is fair to presume that the logarithmic portion of the law of the wall 
actually ceases to exist. In  $5 7 and 8 of paper A we circumvented this difficulty 
in a way which rather lacks conviction, and it is our present intention to repair 
this deficiency. 

Although the present paper and paper A will be interrelated, some of the 
results presented herein will be more general in that they attempt to assess the 
effect of pressure gradients on the velocity distribution near a smooth wall 
without restriction to equilibrium boundary layers (P(x)  = const.). 

At the outset the basic effective-viscosity hypothesis of paper A is reviewed in 
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the light of a similarity argument, and the hypothesis is extended to include the 
viscous sublayer immediately adjacent to the wall. The similarity argument is 
also applied to other hypotheses that have appeared in the literature. 

2. Notation 

symbols are: 
The notation includes symbols defined in Mellor & Gibson (1965). Additional 

q5 = ve/v, ratio of effective viscosity to molecular viscosity; 
6 = (K2Y2/V) I w a y  I ; 

up,, = [ (v/p) (dp/dx)]&, pressure-viscosity velocity; 
Y f  = Yu*/"; 
Uf = u/u,; 
Y* = Y~p"Iv; 
u* = u/u,,; 

CL = v(dp/dx) /pu:  = ( U ~ , , / U ~ ) ~ ,  wall-layer parameter. 

3. A dimensional argument for the behaviour of v, 

We shall first present a skeleton exposition of the argument and then provide 
further discussion. At the outset we note that arguments of this type have been 
applied by Millikan (1938) to deduce the logarithmic behaviour of the velocity 
profile near a wall (and by Kolmogoroff in his treatment of homogeneous turbu- 
lence). A necessary assumption of the present discussion will be that v, depends 
on only three physical quantities in the wall layer. 

The similarity argument may be considered in two steps: 
(i) Assume that in the wall layer, v, = v,(y,u', I > ) ,  where, here, u' = &lay. In  

the defect layer, assume ve = v,(y, u', Us*). The important feature of this assump- 
tion is that v, is independent of the molecular viscosity in the defect layer but 
depends on U6* as well as y and u'. It is implicit that, here, ve depends only on 
velocities relative to the main stream since 

US* = fom ( U - u ) d y  

and u' = - a( U - u)/ay. Non-dimensionally we have 

and 

y2u' 2 = $(T) in the wall layer, 

A = @fx) in the defect layer. 
US* us* 

$ is presumed to be universally applicable near a smooth wall. O is presumed to 
be universally applicable in the outer part of the turbulent boundary layer, but 
does depend on the fact of it being a boundary layer. For example, some other 
function, O', might apply to fully-developed pipe flow. 

are 
both valid. Then we have v, = v$ = Us*@, and it follows that 

(ii) We now hypothesize the existence of an overlap layer where + and 

V, = K2Y2U', P b )  
for the overlap layer. At this point K~ is an arbitrary constant. 
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The above argument is far from being a derivation based on first principles, 
but it does systematize our thinking and clarify certain concepts. Prandtl’s 
‘mixing length hypothesis’ (equation (2 b ) )  is now viewed as the overlap portion 
of the function q5, which we know must also approach the value 1 as its argument 
approaches 0. It is also the overlap portion of the function @, which, according 
to Clauser’s hypothesis (or analytical approximation), in the case of equilibrium 
boundary layers becomes equal to K (see paper A) for some large value of its 
argument. 

One further comment is in order. In  equation ( Z c ) ,  @ could also be considered 
a function of p. But the Clauser hypothesis, which received strong support in 
paper A, stated that, nevertheless, @ = K for all values of /3 = const. However, 
for non-equilibrium boundary layers where p = Pfx) + const., we have no further 
basis for this simplification; in other words, @ could conceivably depend on p(x). 
In any event we would nevertheless obtain equation (2 b)  in the overlap layer. 
This seems to be verified experimentally for non-equilibrium cases (at least when 
r -N ro near the wall), and is apparently a consequence of the small effect exerted 
by the inertial terms in the momentum equation near the wall. 

Alternatives to equation (2) 

The derivation of equation (2) is not unique. It depends on the initial choice of 
physical quantities which one deems to be pertinent near a wall and away from 
the wall. Rather than attempt to justify this choice with lengthy physical argu- 
ments, we shall here simply fall back on the observation that equations ( 2 b ,  e )  led 
to accurate predictions of defect-velocity profiles for a large range of equilibrium 
boundary layers.? But, let us, at least, examine other possibilities. 

I. In  (i) assume that in the wall layer v, = v,(y, u7, v ) ,  and in the defect layer 
ve = v,(y, u,, U6*). We then obtain 

v,/v = $(yu,/v) 
v,/ U6* = @( yu,/ US*) 

and v,/v = KYU,/V in the overlap layer. 

This last result corresponds to one of Clauser’s assumptions mentioned in 
paper A. There we found that it is acceptable only if r N 70 in the overlap layer, 
in which case it is equivalent to equation (2b ) .  

11. In (i) assume that in the wall layer ve = v,(y, u, v ) ,  and in the defect layer 
v, = v,(y, u, U6*). We then obtain 

in the wall layer, 

in the defect layer, 

v,/v = $ ( y u / v )  
v,/U6* = @(yu/U6*) 

in the wall layer, 

in the defect layer, 

and ve cc u y  in the overlap layer. 

When r 2: 70 this does not predict a logarithmic behaviour in the overlap region 
and is unacceptable. 

t Equation (2) also works very well in predicting pipe flows, where, however, @ = K is 
not equal to 0.016 in the outer layer. Other values of K are appropriate to free turbulent 
flows, etc. 

17 Fluid Mech. 24 
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111. In (i) assume that in the wall layer ve = ve(u', u", v), and in the defect 
layer v, = ve(u', u", U6"). We then obtain 

ve/v = q5(u'3/uN2v), 

v,/U6* = cD(ut3/u"2US*) 

and v, = K ~ U ' ~ / U ' ' ~  in the overlap layer. 

This latter result is von Karman's similarity hypothesis. It succeeds in predicting 
a logarithmic portion in the overlap layer when r N ro. When ro = 0 and 
r 2r' (dpldx) y ,  we obtain u N ya, but the constant of proportionality differs by 
a factor of 2 over that obtained with equation ( B e ) .  Stratford's data for this case 
does appear to represent an experimental judgement in opposition to the 
von Karman result. Furthermore, very near the wall, vuN = ( l /p)  (dpldx). $ and 
therefore u would depend strongly on the pressure gradient even when it is weak 
(the argument of q5 would become infinite for zero pressure gradient). Based on 
experimental observation this is an unacceptable result. 

Other hypotheses that attempt to characterize the effective viscosity in the 
sublayer generally fall into one or combinations of the above categories (e.g. 
Deissler 1959; van Driest 1956)' and are applicable only when r 2~ T,,; with the 
help of the relation r = ro, all of these hypotheses may be transformed to the 
simplest form V , / S  = $(yu r / v ) .  

in the wall layer, 

in the defect layer, 

4. The complete effective viscosity function 
After the above diversion we resume the analysis related to equation (2). We set 

(We here require that v, and therefore 5 be positive. In  the present paper &lay is 
always positive, and we shall sometimes drop the symbol I I .) 

We can accordingly summarize the information so far available as follows: 

q5-1  as [ + O ,  

q5 = 6 in the overlap layer, 

where e is the smaller root where Z(e) = K. Equation ( 4 b )  is a well-defined 
function and was the basis of paper A. 

It remains therefore t o  determine a specific function q5(5), which satisfies the 
known conditions given in equation (4a).  Once this is determined the complete 
effective viscosity function may be described in terms of either q5 or since 

$(C)/R = W)' 5 = RZ' ( 5  a' 6) 

everywhere and R sz US*/v. 
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It is apparent that $([) might be evaluated from the experimental 'law of the 
wall ' for the case where I- N 7,, in the wall layer. If we let u+ = u/u, and y+ = yuJv 
equations (1) and (3a) may be written in the form 

$(<) aU+/ay+ = 1, 5 = Kzy+-' aU+/aZJ+. (6% b )  

Apparently there is a limited amount of boundary-layer data which is clearly 
valid in a region including the viscous sublayer. We have therefore appealed to 
Laufer's (1954) pipe data, which is attractive since it exhibits the correct asymp- 
totic behaviour u+ N y+ as y++O. For this reason and for the reason that the 
viscous sublayer is thickest for smell Reynolds number we have favoured the 
data points for Ua/v = 50,000 rather than for 500,000 as shown in figure 1. 

15 
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FIGURE 1. Comparison of calculated profile (solid line) and data in the wall layer. 
Data are from Laufer (1954). 

There are two ways of determining the slopes, au+/ay+, and then $15): by 
graphical differentiation or by differentiating an analytical function which passes 
through the data points. As long as y f  > 27 the logarithmic law of the wall 
passes through the data and immediately we have q5 = 5 for 5 > 11; for very 
small y+ we have u f  = y+ and q5 = 1.t In the intermediate range we differenti- 
ated the experimental data of figure 1 graphically and found that q5(6) increased 
very abruptly at  about 5 = 11 ; the detailed nature of the curve was very sensitive 
to slight changes in the graphical measurements. In fact, if we let 

6 = Kzy+2dU+/dy+ = 11 

we obtain u+ = C- (11/K2)/y+. By setting C = 15.35 the curves fit the data in 
the range 12 6 y+ < 27 and fair with the logarithmic curve at  y+ = 27. 

f Moreover,itisknownthatu+ = y++a4y+4+ ... asy+ + 0 (Townsend 1956, Chapter 9). 
The truncated 2-term expression applies only in the range 0 < y+ < 6 (with a, = 1*2), 
however. 

17-2 
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$([), plotted in figure 2, is the net result of these considerations and the solid 
curve drawn in figure 1 is actually obtained by re-integrating this result (see 5 6). 

We note that recently van Driest & Blumer (1963) have proposed the parameter 
(y2/v) (aulay) as the basis for a criterion for transition of laminar boundary layers; 

x o r 5  

FIGURE 2.  The effective viscosity function #(a, and the function Y(x). 
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FIGURE 3. The composite effective viscosity function. Prandtl's relation is viewed 

as a consequence of the overlap of and @ ( Z ) .  
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the effective value of the parameter decreases with free-stream turbulence. It is 
possible that the value (y2/u) (au/lJy) = 1 1 / ~ ~  represents a value below which all 
disturbances are damped. 

In  figure 3 we have plotted $(6) and on the same plot superimposed the function 
Q(Z) for equilibrium boundary layers. Either of the complete functions, $(<) or 
Q(Z), valid everywhere, could be determined according to equations @a, 6 )  after 
stipulating R. 

A lower limit of R for the validity of our entire analysis is implied by figure 3. 
No overlap exists when llv > K U P  or, with K = 0.016, when R < 700. The 
value R = 700 is generally lower than the Reynolds number of transition. 

5. The complete solution 
By stipulating p and the additional parameter R it would be possible to repeat 

the entire calculations of paper A using a complete @(Z) as derived from figure 3. 
Since f '(7) = (U - u)/ur would, in all cases, now be regular at  7 = 0 a direct result 
of such a calculation would be the skin-friction coefficient, (2/cr)* = U/u, = f '(0) 
corresponding to the wall condition u(0) = 0. Calculations for a range of p and R 
could be made to provide a complete store of information. 

However, there are conceptual and analytical advantages in dividing the 
profile into a defect form (dependent on p), and a wall form (which will involve 
a new pressure gradient parameter). To achieve this division it is necessary to 
make the analytical approximation of neglecting inertial terms in the wall layer. 
Otherwise the result would again be of both p and R. A detailed examination of 
the range of validity of this approximation will be made at the end of 0 6. 

6. The wall profiles 
It is first possible to derive a convenient, general integral equation involving 

the total stress. From equations (l) ,  (2a )  and (3a)  we can write 

u$(6 )  au/aY = 7/P7 

or C$(6) = x 2 7  ( 7 )  

where we define x = (7/PPKY/l'. (8) 
(Adhering to the strict definition of [ in (3a)  equation ( 7 )  should be written more 
generally as [$([) = X2sgn (7) where x = ~ T / ~ ~ * K Y / u .  In  the present paper we 
require that 7 be positive.) Now equation ( 7 )  may be inverted so that is 
expressed as some function of x. For a reason that will shortly be apparent we 
choose to write this inverted equation in the form 

(9) 6 = $(x) + x. 
The function $(x) can be determined from $(<) and equations ( 7 )  and (9) and 

is plotted in figure 2. Recalling the definition of 6 we can write 

which has the solution 
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We have arranged equation (10) in the above form since, when r N r,,, the second 
term on the right yields the familiar ( l /K) lnyu , / v ;  the first term represents 
departure from the logarithmic behaviour in the sublayer and if the integration 
is carried to a value of y outside the viscous sublayer where @(x) = 0 the first 
term should yield the constant value 4.9. It should be clear that, although these 
remarks apply when T N ro, equation (10 )  is applicable even when this restriction 
is not imposed, in which case the second term may not be logarithmic and the 
first term will be constant outside the viscous sublayer but will not, in general, 
be equal to 4.9. 

In  a region which includes the viscous sublayer and at  least a part of the over- 
lap layer we now make the approximation that 

r / p  = u,"+Py, (11 )  

where u: = T0/p and we have temporarily set P = ( l / p )  (dpldx). Equation ( 1 1 )  
assumes that the inertial terms in the equations of motion can be neglected. 
Very near the wall the approximation is obviously valid; later, we shall deter- 
mine the outer limit of y within which the approximation is valid and the nature 
of the join between the resulting solutions and the defect solutions of paper A. 

Together with equation (1 1 )  the second term on the right in equation (10 )  can 
be integrated and the result is 

Equation (12 )  may be written in two different forms depending on whether the 
parameter a = ilP/u: is large or small. 

For small a we have 

where y+ = yu7/v, u+ = u/u, and 

We also find that x = K(  1 + ay+)*y+. Outside the viscous sublayer u,' = B+(a), 
a constant. 

For large a we have 

u* = u:+ 

where, if up,, = (LIP)*, y* = yu& and u* = u/u,, and 

Also x = ~ ( a - +  + y*)qy*. Outside the viscous sublayer, 
a constant. 
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Equation (13) has a simple limit at  a = 0 and approaches (l/K)lny++ B+ 
when y+ 4 a-l. Equation (14) has a simple limit at  1/a = 0 and approaches 
( 2 / ~ )  y** + ( l /~a* )  [ln (4/a) - 21 + B*, when y* B a-%. 

The functions u$(y+)  and u,*(y*) were determined numerically for a range of a. 
B+ or B* is plotted in figure 4 and listed in table 1. The detailed behaviour of B" 

a 

FIGURE 4. The numerically determined B+ or B*. 

a B f  
-0.01 4.92 

0 4.90 
0.02 4.94 
0.05 5.06 
0.10 5.26 
0-20 5.63 

l /u B* 
0 1.33 
0.1 5.63 
0.5 6.74 
1.0 7.34 
2.0 8.12 
3.0 8.70 
4.0 9.18 
5.0 9.62 

Note: equation (32) is an analytical expression for B*(a) valid in the range 0 < l/a < 0.01. 

TABLE 1. Values of B+ or B* = Bf/a% 

for large a is examined in appendix A. The complete solutions are plotted in 
figure 5 (a) for small a and in figure 5 (b)  for large a. 

Ferrari (1956) and Townsend (1961) have already derived equations similar in 
form to equation (13) applicable only outside the viscous sublayer. However, Bf 
has been assigned the constant value appropriate to a = 0 so that their results 
are in error for large a. 
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Y*& = (u,,/v)& 

(b) 

FIGURE 5 .  (a )  u+ vs y+ for small a. The conventional ‘law of the wall’ is only valid for very 
small a. Since p = ayR, small a’s can nevertheless correspond to fairly large P’s. 
( b )  u* vs y* for large a. The brokon lines are u* = const. + (2/~)y*4. 



Pressure gradients and turbulent $ow near a smooth wall 266 

Relationship between the wall projiles and the defect projiles 

The defect profiles of paper A are calculated on the basis of an effective viscosity 
which vanishes a t  the origin and, of course, this is unrealistic in the viscous 
sublayer. On the other hand, the wall profiles should be correct in the viscous 
sublayer but are incorrect in the outer layer on two counts: the effective viscosity 
increases indefinitely and the effective stress variation does not include inertial 
effects. 

In  the overlap region the effective viscosity distributions of both analyses are 
identical (v, = K2y21au/ayJ). If there is a region within the overlap layer where 
the shear stress distribution calculated in paper A is, at least, approximated by 
equation (11) then we can conclude that, in this region, the velocity profiles of 
both analyses will overlap. We will see that this later condition is not analytically 
obvious so that it is desirable to devote the remainder of this section to a demon- 
stration of the fact that 7 of paper A is, in a very real sense, approximated by 
equation (1 1)  within the overlap layer for all values of p. 

For convenience let us denote the 7 distribution of paper A as 7A and the 
7 distribution of the present paper as rB. Equation (1 1)  can then be written 

for direct comparison with 7~170.  

A modified momentum equation may be adopted to present ra in the form 

It can be shown that equation (15) is correct as y+ 0. As in paper A we now 
set u = U(  1 - yf') and also au/ax = U'( 1 - yf'). It is permissible to neglect 
y' = dy/dx; inclusion of this term would complicate the algebra but would not 
alter our conclusions. Insertion of the above results in equation (15) yields? 
8rATgIay = UU'(  1 - yf - UU',  which can be written 

or 

For small 7, f' = A - ( 1 / ~ )  In 7 and it is difficult to see how equations (11') and 
( 16) compare. 

Now let us determine the point, yo, at which equations (11') and (16) agree. 
This clearly occurs when 

In Q 7 we shall show that the skin-friction equation may be written 

1/y = f ' ( ~ ~ )  = A -K-llnT,. (17) 

1 1 U6" 
- = -1n-+A+B+ 
Y K  v 

t Or arA/ay = (dp/dx)  (1 -ua/U2), which shows clearly how the local inertial terms 
modify equation (11). To be exact in the limit as y + 0 the effect of 7' should be included. 
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Combining equations (17) and (18) yields In (you,/v) = - KB+, or 

y$ = exp ( - &+). (19) 

Thus we see that a ~ ~ / a y  = a ~ ~ / a y  deep in the viscous sublayer even though the 
behaviour of these quantities are analytically dissimilar as y --f 0. 

It is now possible to understand the relative behaviour of 7A and rB. Even 
though ij7f_4/ay is infinite at y = 0,t nevertheless, aTA/ay = LkB/ijy in the viscous 
sublayer; at  this point rA is only slightly larger than rB. a ~ ~ ( a y  then slowly 
decreases so that 7A = 7B again at  some value of y. This value of y could be 
designated as the matching point where also au,/ay = au,/ay. 

I/@ = l / ( ~ h R ) )  

/3 = ayR 

FIGURE 6. 7 or [, which mark the outer edge of the velocity overlap layer. The outer edge 
is illustrated as point B in figure 7. 

However, for small p it has long been assumed in the literature that 
can be matched over a wide range, the importance of the logarithmic law of the 
wall residing in this assumption (or approximate experimental observation). 
This, of course, represents a sensible approach. We shall therefore replace the 
stipulation of a unique matching point with an outer limit where 

(74-7B1/7B = 0.05. 

For y smaller than this outer limit, agreement between 7 A  and 7B is, of course, 
much better. Values of r/ (or [) corresponding to 1 ~ ~ - ~ ~ 1 / r ~  = 0.05 have been 
determined from the results of paper A and equation (11). These values are 
plotted in figure 6. 

The stipulation of a 5 yo mismatch for 7 and corresponding 2.5 yo mismatch 
for au/ay is therefore provided as a means of summing up our present discussion 
and as a guide t o  mark approximately the outer edge of the velocity overlap 

t Except in the special cases p = 0 or lip = 0. In the shear-stress plots of figures 6 
and 7 in paper A the infinite slopes at y = 0 are not discernible. This is understandable 
since the slope changes rapidly and at v0 = y$/R has decreased to  ply. 
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region. (This is strictly valid only for equilibrium layers. However, we suspect it 
might also serve as an approximate guide in the general case.) The inner edge, 
of course, coincides with the edge of the viscous sublayer. 

FIGVR 7. Illustration of the overlap of the wall and the defect layers for = 0.10, 
R = lo5 and /I = 92.5. The points, A, B and C are described in the text. 

I n  figure 7 we illustrate a specific example for a = 0.10 and R = los (where 
p = (EAR)% = 92.5). On this plot we have marked the points A, B and C: A is 
the edge at the viscous sublayer; B marks the point where the linear-shear-stress 
approximation ceases to be valid according to the criterion above; C is the 
dividing point between the region where v, = ~~y~ lau/ayl and ve = K U P  as in 
paper A. We have referred to the range A-C as the overlap layer or, what might 
be more explicit, as the effective viscosity overlap layer. A-B is then the velocity 
overlap layer; i.e. the overlap of defect velocity profiles of paper A and the wall 
profiles of the present paper. 
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7. Reconsideration of the skin-friction equation 
It is finally possible to consider the skin-friction equation and to see if, or to 

what extent, equation (26 )  of paper A is valid. It was a result of paper A that to 
any specified accuracy there is a small enough value, y = 6, where 

U 8  

K A  U - u ( e )  = u,A --Iln--, 

and this result is correct even when u, = 0. The results of paper A were calculated 
on the basis that, in the overlap layer, v, = K ~ Y ~ ( ~ U / ~ Y )  so that K ~ Y ~ ( ~ u / ~ Y ) ~  = r ip.  
We therefore obtain 

(20b)  

valid within the overlap layer. Subtracting equation ( 2 0 b )  from (20n) and taking 
the limit, e-+ 0, we obtain 

U(Y) - 4 4  = j c T  (7lP)+ 

U-u(y) = u,A-lim 
E'O 

Equation (20) yields results in the overlap layer identical with those obtained in 
paper A. 

If we now add equation (20) to equation (lo), which is also applicable in the 
overlap layer, we obtain 

In the overlap layer, the last term may be identified (see equation (13b)) with 
B f  so that the above equation may be written 

1 I = (5) = - lnR+A+B+, 
Y K 

1 1  A B+ 
or - = -lnR+-+- 

where Bf/,@ = B*/(AR)). 
K p *  p4 pP 

1 1  A B+ 
or - = -lnR+-+- 

where Bf/,@ = B*/(AR)). 
K p *  p4 pP (21 b )  

In  paper A we have already determined A(&. Combining this information 
with that of figure 4 enables us to plot both A + B-+ or ( A  + B+)//3* as a function 
of p and y or h as a function of /I; these results are shown in figures 8 and 9, 
respectively. 

Uniqueness of cr for equilibrium $ows 

Townsend (1961) has given analytical results pertaining to near-separating flows 
which indicate that, for essentially the same equilibrium flow and the same 
Reynolds number, two values of y = (cf/2)4 (where one value might be zero) are 
possible. Presumably, the initial conditions would determine which of the two 
values are observed experimentally. Townsend further speculated that the flow 
corresponding to the larger value of y might be unstable in the sense that small 
initial-profile deviations would grow downstream. Alternatively, the flow corre- 
sponding t o  the smaller value of y would probably be stable. 
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All of this represents a rather interesting but complicated picture? and it is 
with some relief that we believe that we can disprove these contentions and 
replace them with the simple idea of a unique value of y for each equilibrium flow. 

1 ID4 
m 0 5  0 

2 -  -- - 2  

- -- - 
I I I 0 

-,, 

012 

-- - - 010 

I 1 I I I I 10 
co 

01 
- 0 5  0 0 5  1.0 2 4 10 

P 
FIGURE 9. The revised skin-friction curve. Compared with figure 11 of paper A 

a unique value of y is obtained for each equilibrium flow. 

7 We have already looked into the possibility of a general non-equilibrium theory based 
on the present work. Indications are that non-uniqueness for h(P, R) would represent 
a rather serious impediment to the determination of separation in the general case. 
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The diBculty can be recognized in paper A for there we found that for large /i’ 
the main-stream velocity distribution for an equilibrium flow could be written as 

where ti, and 8; are the initial values of U and S*. Since m varies only slightly 
about the value -0.230 the flow is almost completely determined by 
h2 = (S* dp/dx)/pU2 as one might expect when 7,, is very small. If one now refers 
to figure 11 of paper A one will see (when lip4 is small) that, for the same values 
of R and A ,  two values of 1/p* = y / h  and therefore y are possible. This would 
support Townsend’s findings. But it is just this point that has been amended in 
the present paper as will be seen in the revised plot of the present paper, figure 9; 
here there exists a unique value of lip* = y / h  and therefore y for each value of 
h and R. 

The previous false result was obtained by maintaining B f  = 4.9 so that, 
using equation (53) of paper A, we found that for large p 

1 1  
- = -lnR+ 

K/i’* 
( 2 2 )  

The third term in equation (22) is responsible for the appearance of a maximum 
in the curve A(@-*) for each R as shown in figure 11 of paper A. But, if we now 
incorporate a variable B+ or B* as determined by equation (32) of appendix A in 
the present paper, we find, after some rearranging, that 

(We have here only incorporated the largest terms in equation (33).) Equation 
(23) like figure 9 of the present paper displays no maximum and a single value 
of h corresponds to a single value of p for a given Reynolds number. 

8. Reconsideration of Stratfold’s data 
We have re-examined Stratford’s (1959) data in the light of the present work. 

In  paper A we encountered a need to assume a ‘zero slip ’ condition. This need is 
now eliminated. This time we have accurately (within 5 %) determined the local 
experimental values of A2 = (S*/p) (dpldz). With h and R known at every 2 it is 
possible to recast the data in the form u*(y*)  (where u* = (R/A2)*(u/U) and 
y* = (Rh)P (y/S*)), and this is how the data are presented in figure 10. 

Next the calculated wall profiles are drawn. The shear stress and therefore lla 
are not known a priori. However, if one relies on the theory, l / a  can be deter- 
mined by comparison of theory and data. In  figure lO(a) we have chosen 
l /a  = 0.5; in figure 10(b)  one might be tempted to draw in a curve corresponding 
to a slightly negative 7,, or a-8. However, in the present paper we have not yet 
generalized the theory to  include separated flows. It is nevertheless apparent 
that both flows correspond to l / a  21 0. It should be noted that the data points 
at y** N 2 required that the probe rest on the wall so that the outside probe 
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dimension (the probe was flattened) is yg 2: 8. It is not only possible, but highly 
probable, that the measurements were subject to streamline probe shiftst as is 
apparent in figure 10. The calculated defect profiles may also be plotted in 
figure 10 (u* = RjA*{l/A-F’(()] and y* = (R*/A). Note that, for large enough 

U* 

Y** 
FIGURE 10. A detailed comparison of Stratford’s data with theory. The symbols used are 
the same as in figure 5 of paper A. The profile of figure 10(a) is approaching equilibrium 
while the profile of figure 10(b) is almost precisely in equilibrium. 

p, .F’(() is sensibly invariant with p.) We now observe that the wall profile and 
the defect profile do not match in figure 10 (a )  whereas they do in figure 10 (b ) .  
Also, from the equilibrium value, = 0.04, determined from figure 9 we obtain 
l / a  = AR/@ N 7 in disagreement with the value l / a  2: 0.5 required by the wall 
layer in figure 10 (a).  

7 We had originally included in our analysis a correction to the effective viscosity 
proposed by Townsend (1961). The correction involved a~ /ay  or @u/ay2. One effect of the 
correction is to alter the effective K in the expression u* = const. + (2/~)y**  for small lip. 
From Stratford‘s data, Townsend determined that K N 0.5 instead of 0.41. But in his 
determination Townsend included the points near the wall which we believe are subject to 
probe shift. From the present comparison we might conclude that, at most, K = 0.44. In  
any event, the correction would only slightly modify our results quantitatively and not at 
all qualitatively. 
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All of this is extremely interesting since we believe that in figures 10(cr) and 
10 (b )  we are observing the flow in its adjustment to equilibrium. To exploit this 
further we have prepared figure 11. In  figure 11 (a )  values of h are determined 
with fairly good accuracy from the data. In  figure 11 (b)  we have plotted curves 
of a d .  The curve labelled ‘Actual value’ is obtained by comparison of the 

8 

5 Jxo - 1 

FIGURE 11. A sketch illustrating the approach to equilibrium. The actual value of a-9 lags 
the value according to the equilibrium theory. 

theoretical wall profiles with the data near the wall. The curve labelled ‘Equi- 
librium value’ is obtained from the experimental values of A, figure 9, and the 
expression a% = (hR)%/P. It will be appreciated that the curves drawn in 
figure 11 (b )  are highly imaginative? but the picture that emerges is that the 
actual value of the shear stress or a-8 lags the value which would have been 
obtainedif the flow were in equilibrium (approximately specified by h(x) = const .) 
with the same value of A. We believe that these comments might be a precursor 
to a general theory which accounts for the observed lag effect. 

9. Conclusions 
An effective viscosity hypothesis is presented which, it would appear, is 

universally applicable to all turbulent flows near a smooth wall. Evidence is 
presented which indicates that other hypotheses that have appeared in the 
literature &re either restricted to small pressure gradients, or to smaller portions 
of the layer. 

t The negative values of a-3- are obtained by a rather gross extrapolation of our present 
theory, although it is possible to say that they are indeed negative. 
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The effective viscosity hypothesis when combined with the findings of paper A 
is summarized in figure 3. By stipulating R = US*/v a single, continuous 
function, $(g) or @ ( Z )  is obtained. 

It would have then been possible to determine a single solution for the complete 
velocity profile for each R and /3 = S*(dp/dx)/r,,. However, we found that it was 
also possible to split the solution so that, 

(34) I for the defect layer, 

and, for the wall layer, 
( U  - u)/uT = f '(y/A,P); 

ulu, = u+(u, y/v, a) ,  

where a = v(dp/dx)/pu?. The separate velocity profiles may also be presented in 
alternative forms which remain finite as u, --f 0. 

For given values of /3 and R the defect profile automatically overlaps a portion 
of the wall profile. As illustrated in figure 7 the velocity overlap portion need 
not be logarithmic. Nevertheless, U/u,  = ( 2 / c f ) i  = f '  -I- u+ = fcn(P,  R) so that 
a comparatively simple skin-friction equation is obtained directly. 
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S-ROO9 01 01 administered by the David Taylor Model Basin Contract Number 
Nonr-( 1858) 38. This work made use of Computer Facilities supported in part by 
National Science Foundation Grant NSF-GS 579. 

Appendix A: Evaluation of B* in the neighbourhood of l / a  = 0. 
We wish to evaluate 

( 2 6 )  

where a is a value of y* outside the viscous sublayer (where 9 = 0). We now 
define a quantity, b, such that 

and split up equation (25 )  so that 
b + l/&, ( 2 6 )  

where 

is approximately a function of b and not of a since x = K(& + y*)Qy* N KY*$-. 
Now, if we further restrict b so that approximately 

3 > b, (38) 

then in the range 0 < y* < b it may be ascertained from figure 2 that 

$(x) N - x + x 2 .  
(This behaviour for small x can be obtained from the discussion of 0 6) and the 
integral in equation (27) may be evaluated analytically as 

18 Fluid Mech. 24 
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Now at a! = 00 we have 
B*(co) = - 2 b * / ~  + &b2 + P ( b ) ,  

so that, subtracting equation (30) from (29), we obtain 

2 b 
K a8 

B" = B*(co)-- [ ( d + b ) * - d - - b * ] + -  

where B*(co) = 1-33 has been evaluated numerically. 
If we now expand equation (31) for small l/a* we obtain 

which indicates that the final result is fairly insensitive to b as lla) --f 0 and it is 
only the first two terms in equation (32) that are important. Nevertheless, if we 
set b = 3 we find that equation (32) is accurate t o  the second significant figure 
in the range 0 < l/a* < 0.5. 
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